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Static critical behavior in the inactive phase of the pair contact process
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Steady-state properties in the absorbing phase of thpalr contact process model are investigated. It is
shown that, in typical absorbing stat@gsached by the system’s dynamic ryldbe density of isolated particles
p1, approaches a stationary value that depends on the annihilation probapjlitghé deviation from its
“natural” value at criticality p]® follows a power law:;p[2'— p; ~ (p— pc)?* for p>p.. Monte Carlo simu-
lations yield 8,=0.81. A cluster approximation is developed for this model, qualitatively confirming the
numerical results and predicting; = 1. The singular behavior of the isolated particles density in the inactive
phase is explained using a phenomenological approach.
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[. INTRODUCTION model in the inactive phase by looking at properties of its
natural absorbing stategshe absorbing states selected by the

In the simplest models undergoing absorbing state phassystem’s dynamics. As shown by both mean-fieldlike ap-
transitions in the directed percolatiéRP) universality class, proximations and Monte Carl@MC) simulations, the sta-
such as the contact proce@3P), the stationary state of the tionary density of isolated particles develops a power-law
system in the inactive phase is the state devoid of particlesingularity as it approaches the critical point.

Other models in the same class, similar to the pair contact

process(PCB, have however a richer structure, associated Il. PHENOMENOLOGICAL APPROACH

with the existence of an infinite number of absorbing states ) ) ] .
[1,2]. In the inactive phase, the absorbing state the system !N theé PCP, nearest-neighbor pairs of particles annihilate
evolves to depends on the initial conditions and the distanc8&ch other with probabilitp or create, with probability 1
from the critical point, and so does the average density of P @ particle at one of the adjacentcant sites to the pair.
isolated particles in the stationary state. In the case of PCH) the inactive phase, the concentration of pairs is known to
the field responsible for the dynamitise density of pairs of decay exponentiallyp,(t)~e™ ", with a~(p—p)"ll. The
particlesp,) is coupled to another fiel@he density of iso- €xponentw is as_souated with t_he temporal correlation
lated particlesp;). This background of isolated particles is length and mean-field theory prediatg=1. _ _
responsible for the nonuniversality of some dynamic proper- NOw, if one is interested in studying the stationary single-
ties of the system at criticality3,4]. Recently, the one- Particle concentration as a function p{>p.), one may
dimensional PCP with particle diffusiciknown as PCPD or refer_ to the coupled Langevin equations describing this dy-
annihilation/fission modghas received a lot of attention and Namical process. These equations are constructed to reflect
was at the center of some controvef§y6,8,7,9; neverthe- thel symmetry of the problem and en_volve.sor_ne phenomeno-
less, its critical behavior is not yet fully clarified. Carlon logical parameters that are related in an indirect way to the
et al. [6] presented a pair approximation study of this modelMicroscopic dynamic process under stugge[11] for de-

that however is not appropriate for the nondiffusive casetails). At the mean-field level, the time evolution @f is
When diffusion is absent, all activity stops as soon as thiven by
number of pairs vanishes, because isolated particles are imo-

bile. In contrast, initially isolated particles may give rise to a

pair if diffusion is allowed. This explains why the expected
ﬁg?ta;’}";g;gﬁ'; : p?gsgiatt;\éz%]g:ﬁeg?rgég)pﬁtg? ng_ ob\{iously / coupled to the evolution @f. With the change of
ticleshave to be counted separately from the total number of&riablespy=p,—r/wy, Eq. (1) reads

particles.

In PCP, as the system approaches the critical point from
the active phase, the nonordering field approaches a “natu-
ral” value (p]?"), and its behavior is described by the same
power laws as those of the order paraméie.

In the present paper, we investigate the behavior of thi

dpl 2
W:rlpz_wlplpz_ulpza 1)

dp, —
T ~W1ppp1—Ugp. 2

In the following, we will assumep,(t)=p,(0)e .
él’hen, with the change of variables=e™ !, Eq.(2) may be
solved exactly
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with ' ' '
0.8+ -
— u U
C={ pa(0)+ =pa(0)+ — | e a2l (4)
W1 w1 0.6 .
In the limit t—o0, one has a
0.4+ -
_ u1a
pi(t—oe)=——+C. ®o N
Wi 02 e i —
In the vicinity of the critical point, whem— 0, C decreases [
1 | | 1 |
more rapidly tharnr, and one may therefore conclude that 0 0,04 008 o2 G
p
—_ Ula
pr(t—o)=— w2 (6) FIG. 1. Pair density, (_) and density of isolated particleg
1 (= ——) as a function of, within the (3,2)-cluster approximation.

At the critical point,p,(t—)=0, i.e, configurations with isolated particles are not treated appro-

priately. Indeed, if one aims at building a better approxima-
(7)  tion, one has to go to three-site clusters and condRigs,
the probability of having an isolated particle at the center of
the cluster. The price to pay is that of increasing complexity:
the number of variables and equations increases and these
have to be solved numerically; Carl@at al. dealt with two
variables and two equations, so they were able to obtain
U some results analytically. We have used a (3,2)-cluster ap-
__ nat_ -1 proximation[12] whose technical details are given in the
p1(t—0)=p; Wfa' 8 Appendix.
In Fig. 1, we have plotted the stationary valuesPef and
We must point out that the present argument relies on &9 as functions ofp. As shown, the concentration of pairs
mean-field approach and on the assumption thg(t) vanishes fop=0.128, i.e.p.=0.128 within the present ap-
=p,(0)e~ ! (which may not be true at early time#\ varia-  proximation. The estimate obtained by MC simulations is
tion of p,(t—) with p is then plausible. However, the pre- p.=0.0771; so, as expected, the present result is an improve-
diction that the critical exponent of the quantip}®'—p,  ment when compared to what was obtained by the pair ap-
should be equal to| is only valid within a mean-field ap- Proximation. More interestingly, the concentration of par-
proximation and is not expected to apply to the one-icles at the critical point g,=Pjo, since P;;=0) is

t— 1
0)= —
pa( ) Wy

nat

p1°"is then given byr,/w,, as already found if10]. But
now we can see that; (t—o0) varies withp, in the inactive
phase

dimensional(1D) PCP model. nonzero; indeed,p,;=0.229, a value not far fromp]®
=0.24182), asobtained by the simulationgl3]. On the
ll. CLUSTER APPROXIMATION otf;gr gand, a linear decrease @f for p>p, may also be

noticed.

Mean-fieldlike kinetic equations for the PCPD were ob-
tained in[6]. Whereas the singlesite approximation is only
appropriate to the high-diffusion limit{— 1), the pair ap-
proximation gives a good qualitative picture of the model for  In this paper, we concentrate on the critical behavigs of
D>0, but does not show some important characteristics oin the inactive phase. The simulations that we present were
the PCP without diffusion. Indeed, according to the pair ap-done on systems of size=5000; to ensure a sufficient num-
proximation, the steady-state single-particle density vanisheser of pairs, we chose an initial particle concentration of 0.5.
at the critical point p.=0.2 for the pair approximation with The numbers of particles and of pairs were recorded versus
D=0); however, it is well established that, at the critical time up to a number of Monte Carlo stefs,,y, Which
point, the single-particle density approaches a nonzero valueanged fromt,,,,= 10 for p very close to the transitionp(
pi2 (p1*'=0.242, in a sequential dynamical prodegdso,  =0.0775) down tot,,,=10* for p>0.085. These times
the pair approximation predicts a power-law temporal decayvere chosen such that most of the samifggically around
for the pair concentration in the inactive phase, contrary t&®20 000) had already entered the absorbing state. Forgach
the exponential decay found in the simulations. we evaluated the average activity timg,. To obtain the

In the coarse-grained Langevin description, the fields thastationary value op,, we have averaged the final number of
are used to characterize the system configurations are thgarticles in those samples that entered the absorbing state at
local pair density and the local density of isolated particlesa time aroundr,, . The short-lived samples were excluded in
If one uses two-site clusters, as in the pair approximationprder to eliminate finite-size effects. On the other hand, in

IV. NUMERICAL SIMULATIONS
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025 | : - . naled by a power-law singularity of a static quantity—the
deviation of the particle concentration from its critical-point
value p'l‘at. A cluster-mean-field approximation was devel-

oped that predicts a finite value pf®', in reasonable agree-

o ment with MC simulations and a linear decreasepfwith
Q0004 (p—pe); this is confirmed by a phenomenological approach.
0241 %o - . . . . .
© 00, Such a decrease i, is also shown in our MC simulations;
©oo0 4 0064 the best fit to the data is consistent with an exponént

=0.81(3), different from the mean-field prediction.

Critical behavior of a static quantity in the inactive phase
has been observed by Lipowski and Did#] in a rather
0.23Ls | , | , | , different model with an infinite number of absorbing states.

’ 0.08 0.085 0.09 0.095 In that case, a random walk argument leads to a relationship

p between the corresponding exponent and the order-parameter
exponentB. In the case of PCP, such an argument cannot be
applied and whetheB, is related to thgDP) critical expo-
nents that characterize the active phase of PCP requires fur-
ther investigation. The same applies to other systems with
infinitely many absorbing states.

FIG. 2. Stationary particle densityn the inactive phageas a
function of p.

systems of this size, and fprclose top.., the concentration
of pairs is still considerably higlitypically around 0.1 at
very long times—thus, the concentration of isolated particles

is lower than in samples where the number of pairs is van- ACKNOWLEDGMENTS
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In Fig. 2, we show the stationary single-particle concen-edged'
tration as a function op. Figure 3 shows a log-log plot of
nat

(p7¥'=p1) Vs (p— po), With p73'=0.2418 ang.=0.0771. A APPENDIX

linear fit of the data is clearly appropriate and leads to an L .
Y approp In the (3,2)-cluster approximatidii2] one uses three-site

exponent3,;=0.81(3). This seems to be a different expo- lusters and allows for an overl F two sites between ad-
nent, not simply related to the DP exponents that describe thg USters and aflows for an overlap ot two sites between a
acent clusters. Thus, the probability of a six-site cluster in

critical behavior of other quantities, in the active phase of th . :
PCP model. he stateABCDEF is written as

Psco Peoe P
V. CONCLUSION PABCDEF: PABC BCD " CDE DEF . (Al)
Pec Pcp Poe

In this paper, we show that the approach to the critical
point in the in inactive phase of the 1D PCP model is sig- We usex=P;y;, y=P11d=Po11), 2=P10=Poo1), v
=P, as independent variables. It can be easily shown that
2 — - — T Poic=v+z—y, and Pgp=1—x—y—2v—3z. We then
study all the processes that may occur when a pair belonging
to a six-site cluster is selected.
7 Take, for example, the configuratidn1 1 1 1 1. Ac-
cording to the above approximation, the probability of this
configuration isA; =x%c3, wherec=P,;=x+y. When the
7 central pair is selected, then, with rgtethe configuration
1 1 0 0 1 1 isgenerated. The variation in the number of
three-site clustersinthe state 1 1 1 is ten= —4; analo-
7 gously, the changes in the number of three-site clusters in
configurations1 1 0,1 0 O0,and1 O 1 are, respectively,
Ay=+1Az=+1,Av=0.
e v ST, ¥ S — - — On the other hand, according to the PCP dynamic rules, a
loglo(p-p ) pair may also create a particle at a randomly chosen nearest
¢ . : ) )
neighbor provided this is vacant. If one considers the con-
FIG. 3. Log-log plot of p—p;) vs (p—pc), with pia figuration 11 1 0 1 1 (whose probability is given,
=0.2418 andp.=0.0771. The straight line is a least-squares linearwithin the present approximation, b= xy?v/cd?, with
fit, with slope=0.81. d=P,=v+2), then, with rate *p, the configuration
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111111 isgenerated. This change corresponds to NG x3y X2y x2y2
AX=+3,Ay=—1Az=0Av=—-1. A== A=—, 3= 4=
The kinetic equations fax,y,z,v are obtained by consid- c c cd c
ering all the contributions from all the possible six-site con-
figurations A _y? _XPyz _xy% Y
dx e % Tedd Y e
a = p[ - 4A1_ 6A2_ 4A3_ 2A4_ 4A6_ 2A7_ 2A9]
Xy?z y2z? Xy?v
(1= p)[3A11+ At 3A13t 2A14H AgstAge Ag=—7"— A=, Au=—_,
c-d cd cd
+2A17+Aqg],
dy PR LN
gt =PlAL= A= As—2A7 = 2Ag—2Ag— Ayl + (1 p) 127 cd(1—c—2d)’ "B g
[_All_AZLS]! _XyU(U+Z_y) B yZZZ
dz 14— Cd2 ’ 15_Cd(1_c_2d)1
a - p[A1+ 2A2+ 2A3+A4+A5+ 2A7_A10] + (1_ p)
xyzZl—c—2d—z 2v(v+z—
[_A12_A15]1 A16: yZ( ) , A17:—y v(v y) ,
cd(1—c—2d) cd?
dv
—=p[—2A;—2A5—2A,— +(1-p)[—Ap+
dt PL—2A3—2A5—2A7—=2Ag]+(1—-p)[— At A . y22(1—c—2d—2)
18~
—A1z— At Ars— Agrl, cd(1-c-2d)
where These equations were solved numerically.
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