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Static critical behavior in the inactive phase of the pair contact process
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Steady-state properties in the absorbing phase of the 1d pair contact process model are investigated. It is
shown that, in typical absorbing states~reached by the system’s dynamic rules!, the density of isolated particles
r1, approaches a stationary value that depends on the annihilation probability (p); the deviation from its
‘‘natural’’ value at criticality r1

nat follows a power law:r1
nat2r1;(p2pc)

b1 for p.pc . Monte Carlo simu-
lations yield b150.81. A cluster approximation is developed for this model, qualitatively confirming the
numerical results and predictingb151. The singular behavior of the isolated particles density in the inactive
phase is explained using a phenomenological approach.
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I. INTRODUCTION

In the simplest models undergoing absorbing state ph
transitions in the directed percolation~DP! universality class,
such as the contact process~CP!, the stationary state of th
system in the inactive phase is the state devoid of partic
Other models in the same class, similar to the pair con
process~PCP!, have however a richer structure, associa
with the existence of an infinite number of absorbing sta
@1,2#. In the inactive phase, the absorbing state the sys
evolves to depends on the initial conditions and the dista
from the critical point, and so does the average density
isolated particles in the stationary state. In the case of P
the field responsible for the dynamics~the density of pairs of
particlesr2) is coupled to another field~the density of iso-
lated particlesr1). This background of isolated particles
responsible for the nonuniversality of some dynamic prop
ties of the system at criticality@3,4#. Recently, the one-
dimensional PCP with particle diffusion~known as PCPD or
annihilation/fission model! has received a lot of attention an
was at the center of some controversy@5,6,8,7,9#; neverthe-
less, its critical behavior is not yet fully clarified. Carlo
et al. @6# presented a pair approximation study of this mo
that however is not appropriate for the nondiffusive ca
When diffusion is absent, all activity stops as soon as
number of pairs vanishes, because isolated particles are
bile. In contrast, initially isolated particles may give rise to
pair if diffusion is allowed. This explains why the expecte
behavior of PCP is qualitatively different from theD50
limit of PCPD. In a proper treatment of PCP,isolated par-
ticleshave to be counted separately from the total numbe
particles.

In PCP, as the system approaches the critical point fr
the active phase, the nonordering field approaches a ‘‘n
ral’’ value (r1

nat), and its behavior is described by the sam
power laws as those of the order parameter@10#.

In the present paper, we investigate the behavior of
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model in the inactive phase by looking at properties of
natural absorbing states, the absorbing states selected by t
system’s dynamics. As shown by both mean-fieldlike a
proximations and Monte Carlo~MC! simulations, the sta-
tionary density of isolated particles develops a power-l
singularity as it approaches the critical point.

II. PHENOMENOLOGICAL APPROACH

In the PCP, nearest-neighbor pairs of particles annihi
each other with probabilityp or create, with probability 1
2p, a particle at one of the adjacent~vacant! sites to the pair.
In the inactive phase, the concentration of pairs is known
decay exponentially:r2(t);e2at, with a;(p2pc)

n uu. The
exponent n uu is associated with the temporal correlatio
length and mean-field theory predictsn uu51.

Now, if one is interested in studying the stationary sing
particle concentration as a function ofp(.pc), one may
refer to the coupled Langevin equations describing this
namical process. These equations are constructed to re
the symmetry of the problem and envolve some phenome
logical parameters that are related in an indirect way to
microscopic dynamic process under study~see@11# for de-
tails!. At the mean-field level, the time evolution ofr1 is
given by

dr1

dt
5r 1r22w1r1r22u1r2

2 , ~1!

obviously coupled to the evolution ofr2. With the change of
variablesr15r12r 1 /w1, Eq. ~1! reads

dr1

dt
52w1r2r12u1r2

2 . ~2!

In the following, we will assumer2(t)5r2(0)e2at.
Then, with the change of variablest15e2at, Eq. ~2! may be
solved exactly

r1~ t !52
u1a

w1
2 S w1r2~0!

a
e2at11D1Cew1e2atr2(0)/a,

~3!
©2001 The American Physical Society11-1
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with

C5S r1~0!1
u1

w1
r2~0!1

u1a

w1
2 D e2w1r2(0)/a. ~4!

In the limit t→`, one has

r1~ t→`!52
u1a

w1
2

1C. ~5!

In the vicinity of the critical point, whena→0, C decreases
more rapidly thana, and one may therefore conclude tha

r1~ t→`!.2
u1a

w1
2

. ~6!

At the critical point,r1(t→`)50, i.e.,

r1~ t→`!5
r 1

w1
. ~7!

r1
nat is then given byr 1 /w1, as already found in@10#. But

now we can see thatr1(t→`) varies withp, in the inactive
phase

r1~ t→`!.r1
nat2

u1

w1
2
a. ~8!

We must point out that the present argument relies o
mean-field approach and on the assumption thatr2(t)
5r2(0)e2at ~which may not be true at early times!. A varia-
tion of r1(t→`) with p is then plausible. However, the pre
diction that the critical exponent of the quantityr1

nat2r1

should be equal ton uu is only valid within a mean-field ap
proximation and is not expected to apply to the on
dimensional~1D! PCP model.

III. CLUSTER APPROXIMATION

Mean-fieldlike kinetic equations for the PCPD were o
tained in @6#. Whereas the singlesite approximation is on
appropriate to the high-diffusion limit (D→1), the pair ap-
proximation gives a good qualitative picture of the model
D.0, but does not show some important characteristics
the PCP without diffusion. Indeed, according to the pair
proximation, the steady-state single-particle density vanis
at the critical point (pc50.2 for the pair approximation with
D50); however, it is well established that, at the critic
point, the single-particle density approaches a nonzero va
r1

nat (r1
nat.0.242, in a sequential dynamical process!. Also,

the pair approximation predicts a power-law temporal de
for the pair concentration in the inactive phase, contrary
the exponential decay found in the simulations.

In the coarse-grained Langevin description, the fields t
are used to characterize the system configurations are
local pair density and the local density of isolated particl
If one uses two-site clusters, as in the pair approximat
01611
a

-

-

r
of
-
es

l
e,

y
o

at
he
.
,

configurations with isolated particles are not treated app
priately. Indeed, if one aims at building a better approxim
tion, one has to go to three-site clusters and considerP010,
the probability of having an isolated particle at the center
the cluster. The price to pay is that of increasing complex
the number of variables and equations increases and t
have to be solved numerically; Carlonet al. dealt with two
variables and two equations, so they were able to ob
some results analytically. We have used a (3,2)-cluster
proximation @12# whose technical details are given in th
Appendix.

In Fig. 1, we have plotted the stationary values ofP11 and
P10 as functions ofp. As shown, the concentration of pair
vanishes forp>0.128, i.e.,pc50.128 within the present ap
proximation. The estimate obtained by MC simulations
pc50.0771; so, as expected, the present result is an impr
ment when compared to what was obtained by the pair
proximation. More interestingly, the concentration of pa
ticles at the critical point (r15P10, since P1150! is
nonzero; indeed,r150.229, a value not far fromr1

nat

50.2418(2), as obtained by the simulations@13#. On the
other hand, a linear decrease ofr1 for p.pc may also be
noticed.

IV. NUMERICAL SIMULATIONS

In this paper, we concentrate on the critical behavior ofr1
in the inactive phase. The simulations that we present w
done on systems of sizeL55000; to ensure a sufficient num
ber of pairs, we chose an initial particle concentration of 0
The numbers of particles and of pairs were recorded ve
time up to a number of Monte Carlo steps,tmax, which
ranged fromtmax5106 for p very close to the transition (p
50.0775) down totmax5104 for p.0.085. These times
were chosen such that most of the samples~typically around
20 000) had already entered the absorbing state. For eap,
we evaluated the average activity timetav . To obtain the
stationary value ofr1, we have averaged the final number
particles in those samples that entered the absorbing sta
a time aroundtav . The short-lived samples were excluded
order to eliminate finite-size effects. On the other hand,

FIG. 1. Pair densityr2 (2) and density of isolated particlesr1

(222) as a function ofp, within the (3,2)-cluster approximation
1-2
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systems of this size, and forp close topc , the concentration
of pairs is still considerably high~typically around 0.1! at
very long times—thus, the concentration of isolated partic
is lower than in samples where the number of pairs is v
ishingly small. For this reason, we have also ignored
contribution from these long-lived samples. We have cho
to consider samples with 0.75tav,t,1.25tav , but have
checked that the results are stable with respect to o
choices in a reasonable range.

In Fig. 2, we show the stationary single-particle conce
tration as a function ofp. Figure 3 shows a log-log plot o
(r1

nat2r1) vs (p2pc), with r1
nat50.2418 andpc50.0771. A

linear fit of the data is clearly appropriate and leads to
exponentb150.81(3). This seems to be a different expo
nent, not simply related to the DP exponents that describe
critical behavior of other quantities, in the active phase of
PCP model.

V. CONCLUSION

In this paper, we show that the approach to the criti
point in the in inactive phase of the 1D PCP model is s

FIG. 2. Stationary particle density~in the inactive phase! as a
function of p.

FIG. 3. Log-log plot of (r1
nat2r1) vs (p2pc), with r1

nat

50.2418 andpc50.0771. The straight line is a least-squares lin
fit, with slope50.81.
01611
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naled by a power-law singularity of a static quantity—t
deviation of the particle concentration from its critical-poi
value r1

nat . A cluster-mean-field approximation was deve
oped that predicts a finite value ofr1

nat , in reasonable agree
ment with MC simulations and a linear decrease ofr1 with
(p2pc); this is confirmed by a phenomenological approa
Such a decrease inr1 is also shown in our MC simulations
the best fit to the data is consistent with an exponentb1
50.81(3), different from the mean-field prediction.

Critical behavior of a static quantity in the inactive pha
has been observed by Lipowski and Droz@14# in a rather
different model with an infinite number of absorbing state
In that case, a random walk argument leads to a relation
between the corresponding exponent and the order-param
exponentb. In the case of PCP, such an argument canno
applied and whetherb1 is related to the~DP! critical expo-
nents that characterize the active phase of PCP requires
ther investigation. The same applies to other systems w
infinitely many absorbing states.
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APPENDIX

In the (3,2)-cluster approximation@12# one uses three-site
clusters and allows for an overlap of two sites between
jacent clusters. Thus, the probability of a six-site cluster
the stateABCDEF is written as

PABCDEF5PABC

PBCD

PBC

PCDE

PCD

PDEF

PDE
. ~A1!

We usex[P111, y[P110(5P011), z[P100(5P001), v
[P101 as independent variables. It can be easily shown
P0105v1z2y, and P000512x2y22v23z. We then
study all the processes that may occur when a pair belon
to a six-site cluster is selected.

Take, for example, the configuration1 1 1 1 1 1. Ac-
cording to the above approximation, the probability of th
configuration isA15x4/c3, wherec5P115x1y. When the
central pair is selected, then, with ratep, the configuration
1 1 0 0 1 1 isgenerated. The variation in the number
three-site clusters in the state 1 1 1 is thenDx524; analo-
gously, the changes in the number of three-site cluster
configurations 1 1 0, 1 0 0, and 1 0 1 are, respective
Dy511,Dz511,Dv50.

On the other hand, according to the PCP dynamic rule
pair may also create a particle at a randomly chosen nea
neighbor provided this is vacant. If one considers the c
figuration 1 1 1 0 1 1 ~whose probability is given,
within the present approximation, byA115xy2v/cd2, with
d[P105v1z), then, with rate 12p, the configuration

r

1-3
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1 1 1 1 1 1 is generated. This change corresponds
nx513,ny521,nz50,nv521 .

The kinetic equations forx,y,z,v are obtained by consid
ering all the contributions from all the possible six-site co
figurations

dx

dt
5p@24A126A224A322A424A622A722A9#

1~12p!@3A111A1213A1312A141A151A16

12A171A18#,

dy

dt
5p@A12A42A522A722A822A92A10#1~12p!

@2A112A13#,

dz

dt
5p@A112A212A31A41A512A72A10#1~12p!

@2A122A15#,

dv
dt

5p@22A322A522A722A8#1~12p!@2A111A12

2A132A141A152A17#,

where
s
e,

.

, J

01611
o
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A15
x4

c3
, A25

x3y

c3
, A35

x2vy

c2d
, A45

x2y2

c3
,

A55
y2v2

cd2
, A65

x2yz

c2d
, A75

xy2v

c2d
, A85

y2zv

cd2
,

A95
xy2z

c2d
, A105

y2z2

cd2
, A115

xy2v

cd2
,

A125
xyz2

cd~12c22d!
, A135

y3v

cd2
,

A145
xyv~v1z2y!

cd2
, A155

y2z2

cd~12c22d!
,

A165
xyz~12c22d2z!

cd~12c22d!
, A175

y2v~v1z2y!

cd2
,

A185
y2z~12c22d2z!

cd~12c22d!
.

These equations were solved numerically.
ys.

.

@1# J. Marro and R. Dickman,Nonequilibrium Phase Transition
in Lattice Models~Cambridge University Press, Cambridg
1996!.

@2# For a recent review, see H. Hinrichsen, Adv. Phys.49, 1
~2000!.

@3# I. Jensen, Phys. Rev. Lett.70, 1465 ~1993!; I. Jensen and R
Dickman, Phys. Rev. E48, 1710~1993!.

@4# J.F.F. Mendes, R. Dickman, M. Henkel, and M.C. Marques
Phys. A27, 3019~1994!.

@5# M.J. Howard and U.C. Tau¨ber, J. Phys. A30, 7721~1997!.
@6# E. Carlon, M. Henkel, and U. Schollwo¨ck, Phys. Rev. E63,

036101~2001!.
.
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